A late-onset and mild form of Charcot-Marie-Tooth disease type 2 caused by a novel splice-site mutation within the Mitofusin-2 gene

نویسندگان

  • KATARZYNA KOTRUCHOW
  • DAGMARA KABZIŃSKA
  • IRENA HAUSMANOWA-PETRUSEWICZ
  • ANDRZEJ KOCHAŃSKI
چکیده

Charcot-Marie-Tooth type 2A disease (CMT2A) caused by mutations in the Mitofusin 2 gene (Mfn2) has been shown to be an early-onset axonal neuropathy with severe clinical course in the majority of the patients. In this study we present a unique phenotype of CMT2A disease characterized by late-onset polyneuropathy with a very mild clinical course. This rare form of CMT2A disease is caused by a new splice-site (c.311+1G>T) mutation within the MFN2 gene. Due to disturbance of the MFN2 splicing process, this mutation generates a short transcript which encodes a very short fragment of MFN2 protein. The c.311+1G>T mutation within the MFN2 gene results in the late -onset CMT2 disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous phenotype detection in a Charcot-Marie-Tooth disease type 2A family with Mitofusin 2 gene Q751X mutation by targeted next-generation sequencing

Charcot-Marie-Tooth disease (CMT) is a group of clinically and genetically heterogeneous inherited neuropathies, characterized by slowly progressive distal weakness, wasting and sensory loss. CMT type 2A (CMT2A), caused by the mutations in the mitofusin 2 gene (MFN2), is the most common CMT2 subtype. Herein, we described the clinical, electrophysiological and pathological findings on a 4-genera...

متن کامل

Expression of mitofusin 2 in a transgenic mouse leads to Charcot–Marie–Tooth neuropathy type 2A

Charcot-Marie-Tooth disease type 2A is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene. Mitofusin 2 encodes a mitochondrial outer membrane protein that participates in mitochondrial fusion in mammalian cells. How mutations in this protein lead to Charcot-Marie-Tooth disease type 2A pathophysiology remains unclear. We have generated a transg...

متن کامل

Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot-Marie-Tooth neuropathy type 2A.

Charcot-Marie-Tooth disease type 2A is an autosomal dominant axonal form of peripheral neuropathy caused by mutations in the mitofusin 2 gene. Mitofusin 2 encodes a mitochondrial outer membrane protein that participates in mitochondrial fusion in mammalian cells. How mutations in this protein lead to Charcot-Marie-Tooth disease type 2A pathophysiology remains unclear. We have generated a transg...

متن کامل

The Effect of a Novel c.820C>T (Arg274Trp) Mutation in the Mitofusin 2 Gene on Fibroblast Metabolism and Clinical Manifestation in a Patient

Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant axonal peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2). Mitofusin 2 is a GTPase protein present in the outer mitochondrial membrane and responsible for regulation of mitochondrial network architecture via the fusion of mitochondria. As that fusion process is known to be strongly dependent on the GTPase...

متن کامل

Whole Exome Sequencing Revealed a Novel GJB1 Pathogenic Variant and a Rare BSCL2 Mutation in Two Iranian Large Pedigrees with Multiple Affected Cases of Charcot-Marie-Tooth

Charcot-Marie-Tooth disease (CMT) is the most common hereditary neuropathy of the peripheral nervous system with a wide range of severity and age of onset. CMT patients share similar phenotypes which make it often impossible to identify the disease types based on clinical presentation and electrophysiological studies alone. In recent years, novel genetic diagnostic approaches such as whole exom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2013